This picture supplements Figure 148 in the book. The colors should help you visualize the paths of the beams in our entangled-photon source: Violet – 405 nm pump laser beam; Pink – 810 nm signal and idler entangled-photon beams. A detailed schematic diagram for the entangler is available in the book’s Figure 147. Figure 149 shows the 405 nm beamstop. Continue reading
Category Archives: Single-Photon Experiments
Assembly View of diy Variable-Output, High-Performance PMT High-Voltage Power Supply
We are posting this picture to help you construct the variable-output, low-ripple, high-stability, high-voltage power supply described in pages 38-40 of “Exploring Quantum Physics Through Hands-On Projects.” The schematic diagrams for this power supply are in the book’s Figure 31. Output voltage (up to 2 kV) and current (up to 1 mA) are monitored via two LCD panel meters. Continue reading
quTools quED Entanglement Demonstrator
quTools of München, Germany is the maker of the quED quantum entangled state demonstrator system to generate and analyze polarization entangled photons. This system is a professionally-manufactured version of the type of entangled-photon generator used by many universities, and similar to the diy version described in Chapter 8 of our book (Figure 148).
quED employs a spontaneous parametric down conversion process (type I or type II; collinear or non-collinear) to generate polarization entangled photon pairs. Fiber-coupled single photon detectors in connection with polarizing filters are used to detect the photon pairs, analyze their polarizations and verify their non-classical correlations. Continue reading
ALPhA’s Single Photon Detector Group Order for Educational Institutions
ALPhA (Advanced Laboratory Physics Association) has worked out a deal with Excelitas to sell Single-Photon Counting Modules (SPCMs) to instructional labs. The detectors carry labels specifying that these units belong in the undergraduate instructional labs and not in research labs. These educational detectors have reduced specs, notably a higher background dark count rate, compared to other models from the company.
The set of four SPCMs can be purchased for $5,720 (instead of the usual ~$10k). Continue reading
Actively-Quenched SPAD SPCM Student Design Project
In 2006, then-students Oliver Jan and Phil Makotyn from University of Illinois (at Professor Paul Kwiat’s lab) developed an actively-quenched Single-Photon Counting Module (SPCM) based on the Perkin-Elmer C30902S-DTC Single-Photon Avalanche Photodiode (SPAD). Continue reading
d.i.y. Two-Channel Single-Photon and Coincidence Counter
This is an inside view of the two-channel photon and coincidence counter of the book‘s Figure 145. It is used in the photon entanglement experiments of Chapter 8. Continue reading
MX-10160 Gen III Image Intensifier Tube
This is the surplus Gen III image intensifier tube (an MX-10160 Gen III intensifier tube used in the helmet-mounted AN/AVS-6 “ANVIS” aviation night vision imaging system, which we purchased on eBay®) that we used to build our setup to image interference patterns from our single-photon two-slit setup (book‘s Figure 93). The tube is supplied by 3VDC from two AA cells. We used the same camera to record interference patterns from a single-photon Mach-Zehnder interferometry setup (book‘s Figure 132). Continue reading